Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580213

RESUMO

How early human foragers impacted insular forests is a topic with implications across multiple disciplines, including resource management. Paradoxically, terminal Pleistocene and Early Holocene impacts of foraging communities have been characterized as both extreme-as in debates over human-driven faunal extinctions-and minimal compared to later landscape transformations by farmers and herders. We investigated how rainforest hunter-gatherers managed resources in montane New Guinea and present some of the earliest documentation of Late Pleistocene through mid-Holocene exploitation of cassowaries (Aves: Casuariidae). Worldwide, most insular ratites were extirpated by the Late Holocene, following human arrivals, including elephant birds of Madagascar (Aepyornithidae) and moa of Aotearoa/New Zealand (Dinornithiformes)-icons of anthropogenic island devastation. Cassowaries are exceptional, however, with populations persisting in New Guinea and Australia. Little is known of past human exploitation and what factors contributed to their survival. We present a method for inferring past human interaction with mega-avifauna via analysis of microstructural features of archaeological eggshell. We then contextualize cassowary hunting and egg harvesting by montane foragers and discuss the implications of human exploitation. Our data suggest cassowary egg harvesting may have been more common than the harvesting of adults. Furthermore, our analysis of cassowary eggshell microstructural variation reveals a distinct pattern of harvesting eggs in late ontogenetic stages. Harvesting eggs in later stages of embryonic growth may reflect human dietary preferences and foraging seasonality, but the observed pattern also supports the possibility that-as early as the Late Pleistocene-people were collecting eggs in order to hatch and rear cassowary chicks.


Assuntos
Ovos , Paleógnatas , Floresta Úmida , Animais , Casca de Ovo , Comportamento Alimentar , Nova Guiné , Paleógnatas/fisiologia
2.
PLoS Comput Biol ; 17(4): e1008843, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793558

RESUMO

The arrangement and physiology of muscle fibres can strongly influence musculoskeletal function and whole-organismal performance. However, experimental investigation of muscle function during in vivo activity is typically limited to relatively few muscles in a given system. Computational models and simulations of the musculoskeletal system can partly overcome these limitations, by exploring the dynamics of muscles, tendons and other tissues in a robust and quantitative fashion. Here, a high-fidelity, 26-degree-of-freedom musculoskeletal model was developed of the hindlimb of a small ground bird, the elegant-crested tinamou (Eudromia elegans, ~550 g), including all the major muscles of the limb (36 actuators per leg). The model was integrated with biplanar fluoroscopy (XROMM) and forceplate data for walking and running, where dynamic optimization was used to estimate muscle excitations and fibre length changes throughout both gaits. Following this, a series of static simulations over the total range of physiological limb postures were performed, to circumscribe the bounds of possible variation in fibre length. During gait, fibre lengths for all muscles remained between 0.5 to 1.21 times optimal fibre length, but operated mostly on the ascending limb and plateau of the active force-length curve, a result that parallels previous experimental findings for birds, humans and other species. However, the ranges of fibre length varied considerably among individual muscles, especially when considered across the total possible range of joint excursion. Net length change of muscle-tendon units was mostly less than optimal fibre length, sometimes markedly so, suggesting that approaches that use muscle-tendon length change to estimate optimal fibre length in extinct species are likely underestimating this important parameter for many muscles. The results of this study clarify and broaden understanding of muscle function in extant animals, and can help refine approaches used to study extinct species.


Assuntos
Simulação por Computador , Extinção Biológica , Membro Posterior/fisiologia , Locomoção , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiologia , Paleógnatas/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Membro Posterior/anatomia & histologia , Tendões/fisiologia
3.
Trop Anim Health Prod ; 52(1): 243-247, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31313019

RESUMO

This study was carried out to estimate genetic parameters for morphology, body weight, and tonic immobility traits in the red-winged tinamou (Rhynchotus rufescens). Information on 690 birds was used and genetic parameters were estimated using Bayesian methods under a multi-trait animal model. The following traits were considered in this study: tarsal length (TL), bill length (BL), wing length (WL), head width (HW), bill width (BW), mature weight (MW), weight at 90 days (W90), and tonic immobility (TI). The heritability showed estimates between 0.15 for wing length and 0.56 for bill length. Positive and negative genetic correlations were estimated, ranging from - 0.33 to 0.81. All the morphological, production, and behavioral traits studied will have moderate to high response to selection. The body weight at 90 days is a better alternative for use in breeding programs and its selection would not lead to an increase in the time of tonic immobility. Both the selection for weight gain and for reduction of tonic immobility time would lead to an increase in the size of the legs of the red-winged tinamou, which could be advantageous for thermal control of these birds in tropical systems.


Assuntos
Peso Corporal/genética , Resposta de Imobilidade Tônica , Paleógnatas/genética , Animais , Cruzamento , Hereditariedade , Paleógnatas/anatomia & histologia , Paleógnatas/fisiologia
4.
Anat Rec (Hoboken) ; 303(4): 1035-1042, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31313482

RESUMO

Lithornithids are volant stem palaeognaths from the Paleocene-Eocene. Except for these taxa and the extant neotropical tinamous, all other known extinct and extant palaeognaths are flightless. Investigation of properties of the lithornithid wing and its implications for inference of flight style informs understood locomotor diversity within Palaeognathae and may have implications for estimation of ancestral traits in the clade. Qualitative comparisons with their closest extant volant relatives, the burst-flying tinamous, previously revealed skeletal differences suggesting lithornithids were capable of sustained flight, but quantitative work on wing morphology have been lacking. Until comparatively recently, specimens of lithornithids preserving wing feather remains have been limited. Here, we reconstruct the wing of an exceptionally preserved specimen of the Early Eocene lithornithid Calciavis grandei and estimate body mass, wing surface area, and wing span. We then estimate flight parameters and compare our estimates with representatives from across Aves in a statistical framework. We predict that flight in C. grandei was likely marked by continuous flapping, and that lithornithids were capable of sustained flight and migratory behavior. Our results are consistent with previous hypotheses that the ancestor of extant Palaeognathae may also have been capable of sustained flight. Anat Rec, 303:1035-1042, 2020. © 2019 Wiley Periodicals, Inc.


Assuntos
Voo Animal/fisiologia , Paleógnatas/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Evolução Biológica , Fósseis , Paleógnatas/fisiologia , Filogenia , Asas de Animais/fisiologia
5.
Zoo Biol ; 38(3): 316-320, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30937977

RESUMO

In brown kiwi (Apteryx mantelli), the male is the primary incubator, a trait that is relatively rare among birds. The maintenance of avian incubation behavior is controlled by the protein hormone prolactin (PRL). Although steroid hormone concentrations in both wild and captive kiwi have previously been reported, this study is the first to report levels of PRL in captive and wild male and female kiwi through the prebreeding and breeding seasons, and to directly compare testosterone (T) concentrations between captive and wild males during the breeding and incubation periods. Female PRL concentrations increased at the time of oviposition, whereas male PRL concentrations rose gradually between the prebreeding and incubation periods. Although males are considered the main incubator, an increase in PRL levels could help females maintain behaviors such as nest guarding, or to take over incubation the event of mate loss. A gradual increase in PRL allows the male to be ready for incubation during the long breeding season. Interestingly, T concentrations in captive males did not decrease during incubation and was significantly higher than in wild males. Continual elevated T could have an impact on sperm production through negative feedback, thereby contributing to the low egg fertility seen in captive kiwi. Therefore, determining the underlying reason for the differences in hormone levels could be significant, if not vital, for improving the success of captive kiwi breeding programs.


Assuntos
Paleógnatas/fisiologia , Prolactina/sangue , Testosterona/sangue , Animais , Animais de Zoológico/sangue , Cruzamento , Feminino , Masculino , Comportamento de Nidação/fisiologia , Nova Zelândia , Oviposição/fisiologia , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia
6.
Science ; 364(6435): 74-78, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948549

RESUMO

A core question in evolutionary biology is whether convergent phenotypic evolution is driven by convergent molecular changes in proteins or regulatory regions. We combined phylogenomic, developmental, and epigenomic analysis of 11 new genomes of paleognathous birds, including an extinct moa, to show that convergent evolution of regulatory regions, more so than protein-coding genes, is prevalent among developmental pathways associated with independent losses of flight. A Bayesian analysis of 284,001 conserved noncoding elements, 60,665 of which are corroborated as enhancers by open chromatin states during development, identified 2355 independent accelerations along lineages of flightless paleognaths, with functional consequences for driving gene expression in the developing forelimb. Our results suggest that the genomic landscape associated with morphological convergence in ratites has a substantial shared regulatory component.


Assuntos
Evolução Biológica , Epigênese Genética , Evolução Molecular , Voo Animal , Paleógnatas/anatomia & histologia , Paleógnatas/genética , Animais , Teorema de Bayes , Cromatina/metabolismo , Sequência Conservada , Elementos Facilitadores Genéticos , Epigenômica , Éxons/genética , Extinção Biológica , Membro Anterior/anatomia & histologia , Paleógnatas/fisiologia , Fenótipo , Filogenia
7.
Proc Biol Sci ; 285(1877)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669903

RESUMO

Often the mutualistic roles of extinct species are inferred based on plausible assumptions, but sometimes palaeoecological evidence can overturn such inferences. We present an example from New Zealand, where it has been widely assumed that some of the largest-seeded plants were dispersed by the giant extinct herbivorous moa (Dinornithiformes). The presence of large seeds in preserved moa gizzard contents supported this hypothesis, and five slow-germinating plant species (Elaeocarpus dentatus, E. hookerianus, Prumnopitys ferruginea, P. taxifolia, Vitex lucens) with thick seedcoats prompted speculation about whether these plants were adapted for moa dispersal. However, we demonstrate that all these assumptions are incorrect. While large seeds were present in 48% of moa gizzards analysed, analysis of 152 moa coprolites (subfossil faeces) revealed a very fine-grained consistency unparalleled in extant herbivores, with no intact seeds larger than 3.3 mm diameter. Secondly, prolonged experimental mechanical scarification of E. dentatus and P. ferruginea seeds did not reduce time to germination, providing no experimental support for the hypothesis that present-day slow germination results from the loss of scarification in moa guts. Paradoxically, although moa were New Zealand's largest native herbivores, the only seeds to survive moa gut passage intact were those of small-seeded herbs and shrubs.


Assuntos
Extinção Biológica , Herbivoria , Paleógnatas/fisiologia , Dispersão de Sementes , Árvores/fisiologia , Animais , Elaeocarpaceae/fisiologia , Fósseis , Nova Zelândia , Sementes/fisiologia , Traqueófitas/fisiologia , Vitex/fisiologia
8.
Proc Natl Acad Sci U S A ; 115(7): 1546-1551, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440415

RESUMO

Over the past 50,000 y, biotic extinctions and declines have left a legacy of vacant niches and broken ecological interactions across global terrestrial ecosystems. Reconstructing the natural, unmodified ecosystems that preceded these events relies on high-resolution analyses of paleoecological deposits. Coprolites are a source of uniquely detailed information about trophic interactions and the behaviors, gut parasite communities, and microbiotas of prehistoric animal species. Such insights are critical for understanding the legacy effects of extinctions on ecosystems, and can help guide contemporary conservation and ecosystem restoration efforts. Here we use high-throughput sequencing (HTS) of ancient eukaryotic DNA from coprolites to reconstruct aspects of the biology and ecology of four species of extinct moa and the critically endangered kakapo parrot from New Zealand (NZ). Importantly, we provide evidence that moa and prehistoric kakapo consumed ectomycorrhizal fungi, suggesting these birds played a role in dispersing fungi that are key to NZ's natural forest ecosystems. We also provide the first DNA-based evidence that moa frequently supplemented their broad diets with ferns and mosses. Finally, we also find parasite taxa that provide insight into moa behavior, and present data supporting the hypothesis of coextinction between moa and several parasite species. Our study demonstrates that HTS sequencing of coprolites provides a powerful tool for resolving key aspects of ancient ecosystems and may rapidly provide information not obtainable by conventional paleoecological techniques, such as fossil analyses.


Assuntos
Comportamento Animal/fisiologia , Aves/fisiologia , DNA/análise , Ecologia , Extinção Biológica , Fósseis , Paleógnatas/fisiologia , Animais , DNA/genética , Fungos/genética , Parasitos/genética , Plantas/genética
10.
J Comp Neurol ; 525(11): 2514-2534, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28256705

RESUMO

The avian centrifugal visual system, which projects from the brain to the retina, has been intensively studied in several Neognathous birds that have a distinct isthmo-optic nucleus (ION). However, birds of the order Palaeognathae seem to lack a proper ION in histologically stained brain sections. We had previously reported in the palaeognathous Chilean Tinamou (Nothoprocta perdicaria) that intraocular injections of Cholera Toxin B subunit retrogradely label a considerable number of neurons, which form a diffuse isthmo-optic complex (IOC). In order to better understand how this IOC-based centrifugal visual system is organized, we have studied its major components by means of in vivo and in vitro tracing experiments. Our results show that the IOC, though structurally less organized than an ION, possesses a dense core region consisting of multipolar neurons. It receives afferents from neurons in L10a of the optic tectum, which are distributed with a wider interneuronal spacing than in Neognathae. The tecto-IOC terminals are delicate and divergent, unlike the prominent convergent tecto-ION terminals in Neognathae. The centrifugal IOC terminals in the retina are exclusively divergent, resembling the terminals from "ectopic" centrifugal neurons in Neognathae. We conclude that the Tinamou's IOC participates in a comparable general IOC-retina-TeO-IOC circuitry as the neognathous ION. However, the connections between the components are structurally different and their divergent character suggests a lower spatial resolution. Our findings call for further comparative studies in a broad range of species for advancing our understanding of the evolution, plasticity and functional roles of the avian centrifugal visual system.


Assuntos
Paleógnatas/fisiologia , Retina/fisiologia , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Animais , Aves , Chile , Feminino , Masculino , Paleógnatas/anatomia & histologia , Retina/citologia , Especificidade da Espécie , Colículos Superiores/citologia , Vias Visuais/citologia
11.
Curr Biol ; 27(3): R110-R113, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28171755

RESUMO

The flightless ratite birds are scattered all across the Southern hemisphere, on landmasses that have long been separated from each other. But how did they get there? They flew in from the North.


Assuntos
Evolução Biológica , Voo Animal , Paleógnatas/fisiologia , Animais , DNA Mitocondrial , Paleógnatas/genética , Filogenia , Análise de Sequência de DNA
12.
Anat Rec (Hoboken) ; 298(4): 771-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25346176

RESUMO

Kiwi (Apteryx spp.) have a visual system unlike that of other nocturnal birds, and have specializations to their auditory, olfactory, and tactile systems. Eye size, binocular visual fields and visual brain centers in kiwi are proportionally the smallest yet recorded among birds. Given the many unique features of the kiwi visual system, we examined the laminar organization of the kiwi retina to determine if they evolved increased light sensitivity with a shift to a nocturnal niche or if they retained features of their diurnal ancestor. The laminar organization of the kiwi retina was consistent with an ability to detect low light levels similar to that of other nocturnal species. In particular, the retina appeared to have a high proportion of rod photoreceptors as compared to diurnal species, as evidenced by a thick outer nuclear layer, and also numerous thin photoreceptor segments intercalated among the conical shaped cone photoreceptor inner segments. Therefore, the retinal structure of kiwi was consistent with increased light sensitivity, although other features of the visual system, such as eye size, suggest a reduced reliance on vision. The unique combination of a nocturnal retina and smaller than expected eye size, binocular visual fields, and brain regions make the kiwi visual system unlike that of any bird examined to date. Whether these features of their visual system are an evolutionary design that meets their specific visual needs or are a remnant of a kiwi ancestor that relied more heavily on vision is yet to be determined.


Assuntos
Comportamento Animal/fisiologia , Paleógnatas/anatomia & histologia , Retina/anatomia & histologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Evolução Biológica , Nova Zelândia , Paleógnatas/fisiologia , Retina/fisiologia , Olfato/fisiologia
13.
BMC Evol Biol ; 14: 75, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24885927

RESUMO

BACKGROUND: The forelimb-specific gene tbx5 is highly conserved and essential for the development of forelimbs in zebrafish, mice, and humans. Amongst birds, a single order, Dinornithiformes, comprising the extinct wingless moa of New Zealand, are unique in having no skeletal evidence of forelimb-like structures. RESULTS: To determine the sequence of tbx5 in moa, we used a range of PCR-based techniques on ancient DNA to retrieve all nine tbx5 exons and splice sites from the giant moa, Dinornis. Moa Tbx5 is identical to chicken Tbx5 in being able to activate the downstream promotors of fgf10 and ANF. In addition we show that missexpression of moa tbx5 in the hindlimb of chicken embryos results in the formation of forelimb features, suggesting that Tbx5 was fully functional in wingless moa. An alternatively spliced exon 1 for tbx5 that is expressed specifically in the forelimb region was shown to be almost identical between moa and ostrich, suggesting that, as well as being fully functional, tbx5 is likely to have been expressed normally in moa since divergence from their flighted ancestors, approximately 60 mya. CONCLUSIONS: The results suggests that, as in mice, moa tbx5 is necessary for the induction of forelimbs, but is not sufficient for their outgrowth. Moa Tbx5 may have played an important role in the development of moa's remnant forelimb girdle, and may be required for the formation of this structure. Our results further show that genetic changes affecting genes other than tbx5 must be responsible for the complete loss of forelimbs in moa.


Assuntos
Proteínas Aviárias/genética , Evolução Biológica , Voo Animal , Membro Anterior/embriologia , Paleógnatas/genética , Proteínas com Domínio T/genética , Animais , Fator Natriurético Atrial/genética , Proteínas Aviárias/metabolismo , Galinhas , Fator 10 de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Nova Zelândia , Paleógnatas/fisiologia , Struthioniformes/embriologia , Proteínas com Domínio T/metabolismo
14.
Mol Biol Evol ; 31(7): 1686-96, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24825849

RESUMO

One of the most startling discoveries in avian molecular phylogenetics is that the volant tinamous are embedded in the flightless ratites, but this topology remains controversial because recent morphological phylogenies place tinamous as the closest relative of a monophyletic ratite clade. Here, we integrate new phylogenomic sequences from 1,448 nuclear DNA loci totaling almost 1 million bp from the extinct little bush moa, Chilean tinamou, and emu with available sequences from ostrich, elegant crested tinamou, four neognaths, and the green anole. Phylogenetic analysis using standard homogeneous models and heterogeneous models robust to common topological artifacts recovered compelling support for ratite paraphyly with the little bush moa closest to tinamous within ratites. Ratite paraphyly was further corroborated by eight independent CR1 retroposon insertions. Analysis of morphological characters reinterpreted on a 27-gene paleognath topology indicates that many characters are convergent in the ratites, probably as the result of adaptation to a cursorial life style.


Assuntos
Paleógnatas/classificação , Paleógnatas/genética , Adaptação Fisiológica , Animais , Teorema de Bayes , Evolução Molecular , Genoma , Funções Verossimilhança , Modelos Genéticos , Paleógnatas/anatomia & histologia , Paleógnatas/fisiologia , Filogenia , Análise de Sequência de DNA
15.
PLoS One ; 8(11): e80036, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244601

RESUMO

Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These 'bill-tip organs' allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation.


Assuntos
Bico/anatomia & histologia , Charadriiformes/anatomia & histologia , Mecanorreceptores/ultraestrutura , Paleógnatas/anatomia & histologia , Papagaios/anatomia & histologia , Núcleos do Trigêmeo/anatomia & histologia , Adaptação Fisiológica , Animais , Bico/diagnóstico por imagem , Bico/fisiologia , Evolução Biológica , Charadriiformes/classificação , Charadriiformes/fisiologia , Comportamento Alimentar/fisiologia , Mecanorreceptores/fisiologia , Paleógnatas/classificação , Paleógnatas/fisiologia , Papagaios/classificação , Papagaios/fisiologia , Filogenia , Radiografia , Especificidade da Espécie , Núcleos do Trigêmeo/diagnóstico por imagem , Núcleos do Trigêmeo/fisiologia , Vibração
16.
Proc Natl Acad Sci U S A ; 110(42): 16910-5, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082104

RESUMO

Knowledge of extinct herbivore community structuring is essential for assessing the wider ecological impacts of Quaternary extinctions and determining appropriate taxon substitutes for rewilding. Here, we demonstrate the potential for coprolite studies to progress beyond single-species diet reconstructions to resolving community-level detail. The moa (Aves: Dinornithiformes) of New Zealand are an intensively studied group of nine extinct herbivore species, yet many details of their diets and community structuring remain unresolved. We provide unique insights into these aspects of moa biology through analyses of a multispecies coprolite assemblage from a rock overhang in a montane river valley in southern New Zealand. Using ancient DNA (aDNA), we identified 51 coprolites, which included specimens from four sympatric moa species. Pollen, plant macrofossils, and plant aDNA from the coprolites chronicle the diets and habitat preferences of these large avian herbivores during the 400 y before their extinction (∼1450 AD). We use the coprolite data to develop a paleoecological niche model in which moa species were partitioned based on both habitat (forest and valley-floor herbfield) and dietary preferences, the latter reflecting allometric relationships between body size, digestive efficiency, and nutritional requirements. Broad ecological niches occupied by South Island giant moa (Dinornis robustus) and upland moa (Megalapteryx didinus) may reflect sexual segregation and seasonal variation in habitat use, respectively. Our results show that moa lack extant ecological analogs, and their extinction represents an irreplaceable loss of function from New Zealand's terrestrial ecosystems.


Assuntos
Ecossistema , Fósseis , Herbivoria/fisiologia , Paleógnatas/fisiologia , Animais , Comportamento Animal/fisiologia , Nova Zelândia
17.
Poult Sci ; 92(10): 2613-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24046407

RESUMO

Avian genetic resources have declined dramatically over the past half century as the cost of maintaining populations has exceeded the perceived benefit of keeping them. Despite the early importance of poultry in the development of cryopreservation techniques, very little avian germplasm has been conserved. Cryopreservation and recovery of avian gonads preserve the W chromosome and overcome problems of freezing and recovering semen or conserving and manipulating embryonic cells, and the use of vitrification procedures for preserving gonads minimizes cellular damage. On the basis of research demonstrating the biological possibility of cryopreserving and transplanting avian gonads, 5,125 testicles and 2,667 ovaries from 10 populations of Japanese quail, 9 populations of chickens, and 1 population of Chilean tinamou were cryopreserved and sent to the Canadian Animal Genetic Resources program for long-term storage. These gonads represent 20 of the 33 distinct avian populations currently maintained at Canadian public institutions of agricultural research.


Assuntos
Galinhas/fisiologia , Conservação dos Recursos Naturais/métodos , Coturnix/fisiologia , Criopreservação/métodos , Ovário/fisiologia , Paleógnatas/fisiologia , Testículo/fisiologia , Animais , Canadá , Criopreservação/veterinária , Feminino , Pesquisa em Genética , Masculino , Vitrificação
18.
Proc Biol Sci ; 280(1760): 20130401, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23576789

RESUMO

The extinct giant moa Dinornis is one of the most remarkable known examples of reversed sexual size dimorphism (RSD), with males weighing 34-85 kg, but females weighing up to 240 kg. However, there has been little consideration of the evolutionary mechanism that produced this level of dimorphism, and most living palaeognaths also exhibit varying levels of RSD. Using male and female body mass data for extant ratites and tinamous and four extinct moa genera, and tests of phylogenetic dependence (λ) of body size evolution among these species, we investigated whether Dinornis was truly unusual with respect to RSD relative to other palaeognaths, which sex was under greater pressure to change in size over evolutionary time, and which candidate hypotheses explaining the presence and variability of RSD in the genus are most plausible. We demonstrate that the extreme level of RSD exhibited by Dinornis represents a straightforward consequence of positive allometric scaling of body size. However, Dinornis females have undergone more evolutionary change than males, and larger females from high-productivity environments are associated with greater differentiation, possibly driven by intraspecific competition and female-biased selection for increased offspring investment.


Assuntos
Evolução Biológica , Fósseis , Paleógnatas/genética , Paleógnatas/fisiologia , Filogenia , Caracteres Sexuais , Animais , Peso Corporal/fisiologia , Pesos e Medidas Corporais , Feminino , Masculino , Preferência de Acasalamento Animal/fisiologia , Nova Zelândia , Reprodução/fisiologia , Especificidade da Espécie
20.
Conserv Biol ; 27(2): 335-44, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23330669

RESUMO

Preserving allelic diversity is important because it provides the capacity for adaptation and thus enables long-term population viability. Allele retention is difficult to predict in animals with overlapping generations, so we used a new computer model to simulate retention of rare alleles in small populations of 3 species with contrasting life-history traits: North Island Brown Kiwi (Apteryx mantelli; monogamous, long-lived), North Island Robins (Petroica longipes; monogamous, short-lived), and red deer (Cervus elaphus; polygynous, moderate lifespan). We simulated closed populations under various demographic scenarios and assessed the amounts of artificial immigration needed to achieve a goal of retaining 90% of selectively neutral rare alleles (frequency in the source population = 0.05) after 10 generations. The number of immigrants per generation required to meet the genetic goal ranged from 11 to 30, and there were key similarities and differences among species. None of the species met the genetic goal without immigration, and red deer lost the most allelic diversity due to reproductive skew among polygynous males. However, red deer required only a moderate rate of immigration relative to the other species to meet the genetic goal because nonterritorial breeders had a high turnover. Conversely, North Island Brown Kiwi needed the most immigration because the long lifespan of locally produced territorial breeders prevented a large proportion of immigrants from recruiting. In all species, the amount of immigration needed generally decreased with an increase in carrying capacity, survival, or reproductive output and increased as individual variation in reproductive success increased, indicating the importance of accurately quantifying these parameters to predict the effects of management. Overall, retaining rare alleles in a small, isolated population requires substantial investment of management effort. Use of simulations to explore strategies optimized for the populations in question will help maximize the value of this effort..


Assuntos
Conservação dos Recursos Naturais , Cervos/fisiologia , Variação Genética , Paleógnatas/fisiologia , Aves Canoras/fisiologia , Alelos , Distribuição Animal , Animais , Cervos/genética , Feminino , Masculino , Modelos Biológicos , Nova Zelândia , Paleógnatas/genética , Dinâmica Populacional , Aves Canoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...